

KA-2810AZGS-G

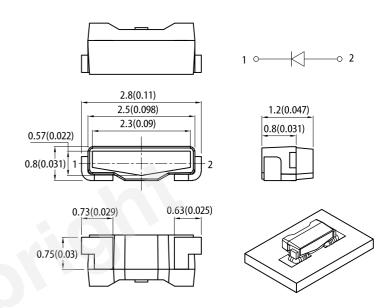
DESCRIPTIONS

- The Green source color devices are made with InGaN Light Emitting Diode
- · Electrostatic discharge and power surge could damage the LEDs
- . It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs
- All devices, equipments and machineries must be electrically grounded

FEATURES

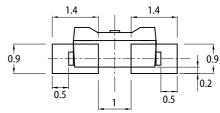
- 2.8 x 1.2 x 0.8 mm right angle SMD LED, 0.8 mm thickness
- Low power consumption
- · Ideal for backlight and indicator
- · Package: 2000 pcs / reel
- Moisture sensitivity level: 3
- Halogen-free
- · RoHS compliant

APPLICATIONS


- Backlight
- · Status indicator
- Home and smart appliances
- · Wearable and portable devices
- · Healthcare applications

ATTENTION

Observe precautions for handling electrostatic discharge sensitive devices



PACKAGE DIMENSIONS

RECOMMENDED SOLDERING PATTERN

(units: mm; tolerance: \pm 0.1)

- 1. All dimensions are in millimeters (inches)
- Tolerance is ±0.1(0.004") unless otherwise noted.
 The specifications, characteristics and technical data described in the datasheet are subject to
- change without prior notice.

 4. The device has a single mounting surface. The device must be mounted according to the specifications.

SELECTION GUIDE

Part Number	Emitting Color (Material)	Lens Type	Iv (mcd) @ 20mA [2]		Viewing Angle [1]
			Min.	Тур.	201/2
KA-2810AZGS-G	Green (InGaN)	Water Clear	1000	1400	110°

- Notes.

 1. 01/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value.

 2. Luminous intensity / luminous flux: +/-15%.

 3. Luminous intensity value is traceable to CIE127-2007 standards.

ELECTRICAL / OPTICAL CHARACTERISTICS at T_A=25°C

Parameter	Symbol	Emitting Color	Value		11:4
Parameter		Emitting Color	Тур.	Max.	Unit
Wavelength at Peak Emission I _F = 20mA	λ_{peak}	Green	520	-	nm
Dominant Wavelength I _F = 20mA	λ _{dom} ^[1]	Green	525	-	nm
Spectral Bandwidth at 50% Φ REL MAX I _F = 20mA	Δλ	Green	35	-	nm
Capacitance	С	Green	100	-	pF
Forward Voltage I _F = 20mA	V _F ^[2]	Green	3.2	4	V
Reverse Current (V _R = 5V)	I _R	Green	-	50	μΑ
Temperature Coefficient of λ_{peak} I_F = 20mA, -10°C $\leq T \leq 85^{\circ}$ C	$TC_{\lambda peak}$	Green	0.05	-	nm/°C
Temperature Coefficient of λ_{dom} I_F = 20mA, -10°C $\leq T \leq 85^{\circ}C$	TC_{\lambdadom}	Green	0.03	-	nm/°C
Temperature Coefficient of V_F I_F = 20mA, -10°C \leq T \leq 85°C	TC _V	Green	-2.9	-	mV/°C

Notes:

ABSOLUTE MAXIMUM RATINGS at T_A=25°C

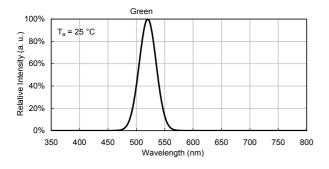
Parameter	Symbol	Value	Unit
Power Dissipation	P_D	120	mW
Reverse Voltage	V _R	5	V
Junction Temperature	Tj	115	°C
Operating Temperature	T _{op}	-40 to +85	°C
Storage Temperature	T _{stg}	-40 to +85	°C
DC Forward Current	I _F	30	mA
Peak Forward Current	I _{FM} ^[1]	100	mA
Electrostatic Discharge Threshold (HBM)	-	450	V
Thermal Resistance (Junction / Ambient)	R _{th JA} ^[2]	310	°C/W
Thermal Resistance (Junction / Solder point)	R _{th JS} ^[2]	130	°C/W

Notes:

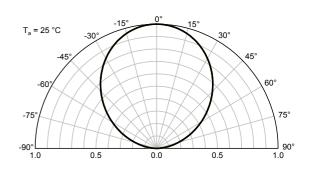
1. 1/10 Duty Cycle, 0.1ms Pulse Width.

2. R_{B, JA}, R_{b, IS} Results from mounting on PC board FR4 (pad size ≥ 16 mm² per pad).

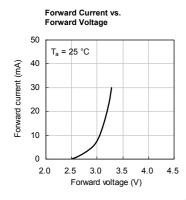
3. Relative humidity levels maintained between 40% and 60% in production area are recommended to avoid the build-up of static electricity – Ref JEDEC/JESD625-A and JEDEC/J-STD-033.

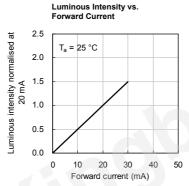

^{1.} The dominant wavelength (λd) above is the setup value of the sorting machine. (Tolerance λd : ± 1 nm.)

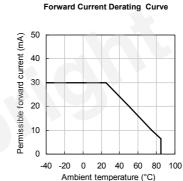
^{2.} Forward voltage: ±0.1V.
3. Wavelength value is traceable to CIE127-2007 standards.
4. Excess driving current and / or operating temperature higher than recommended conditions may result in severe light degradation or premature failure.

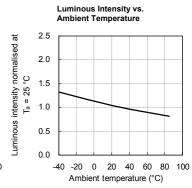


TECHNICAL DATA

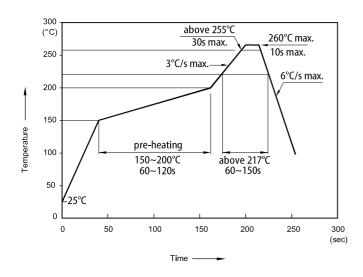

RELATIVE INTENSITY vs. WAVELENGTH




SPATIAL DISTRIBUTION

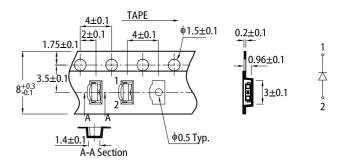


GREEN

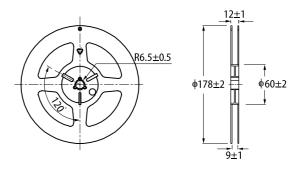


REFLOW SOLDERING PROFILE for LEAD-FREE SMD PROCESS

Notes:

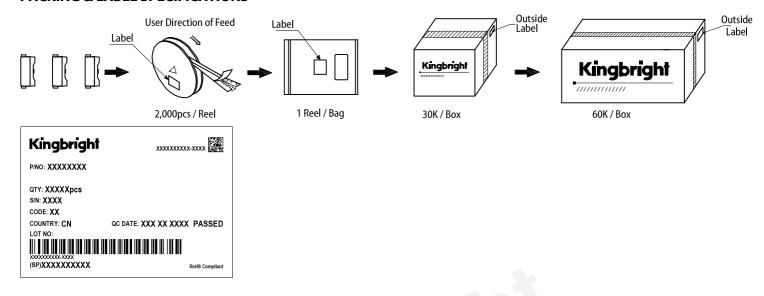

- Notes.

 1. Don't cause stress to the LEDs while it is exposed to high temperature.


 2. The maximum number of reflow soldering passes is 2 times.

 3. Reflow soldering is recommended. Other soldering methods are not recommended as they might cause damage to the product

TAPE SPECIFICATIONS (units:mm)



REEL DIMENSION (units:mm)

PACKING & LABEL SPECIFICATIONS

HANDLING PRECAUTIONS

Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Although its characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force. As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might lead to damage and premature failure of the LED.

1. Do not directly touch or handle the silicone lens surface. It may damage the internal circuitry.

- 2. As silicone encapsulation is permeable to gases, some corrosive substances such as H₂S might corrode silver plating of lead frame.
 - Special care should be taken if an LED with silicone encapsulation is to be used near such substances.

PRECAUTIONARY NOTES

- The information included in this document reflects representative usage scenarios and is intended for technical reference only
- The part number, type, and specifications mentioned in this document are subject to future change and improvement without notice. Before production usage customer should refer to the latest datasheet for the updated specifications.
- When using the products referenced in this document, please make sure the product is being operated within the environmental and electrical limits specified in the datasheet. If customer usage exceeds the specified limits, Kingbright will not be responsible for any subsequent issues.

 The information in this document applies to typical usage in consumer electronics applications. If customer's application has special reliability requirements or have life-threatening
- liabilities, such as automotive or medical usage, please consult with Kingbright representative for further assistance
- The contents and information of this document may not be reproduced or re-transmitted without permission by Kingbright
- All design applications should refer to Kingbright application notes available at <a href="https://doi.org/10.1007/j.nct.2007/j.nct.

